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Abstract. This paper shows how a mobile robot equipped with sonar sensors and

an odometer is used to test ideas about cognitive mapping. The robot first explores

an office environment and computes a “cognitive map” which is a network of

ASRs [1]. The robot generates two networks, one for the outward journey and the

other for the journey home. It is shown that both networks are different. The two

networks, however, are not merged to form a single network. Instead, the robot

attempts to use distance information implicit in the shape of each ASR to find

its way home. At random positions in the homeward journey, the robot calculates

its orientation towards home. The robot’s performances for both problems are

evaluated and found to be surprisingly accurate.

1 Introduction

This symposium posed an interesting question: how could robotics researchers de-

velop autonomous mobile robots that understand what they are doing and have self-

awareness? An answer to such a question is not easy; many would say impossible. The

field of Artificial Intelligence (AI) begun with a quest for an answer to the question:

How could a program be intelligent? Fifty years on, we readily embodied our intelli-

gent software in the form of an autonomous mobile robot. Rightly so, a challenging

question for the next fifty years would be: how could such a robot be intelligent? And,

dare we be bold and ask: could such a robot behave with original intent [2]?

It is still a long way before we even begin to understand how we might approach

developing such a robot. However, we could now begin conducting numerous experi-

ments on how a robot might, and could, behave like cognitive agents, be they humans

or animals. In this paper, we describe one such work - how to use a mobile robot to

test a theory of cognitive mapping. Since Tolman [3] suggested that animals (includ-

ing humans) create a representation(s) of the environment in their minds and referred

to it as a “cognitive map”, many psychological experiments have been conducted to

study the nature of cognitive maps (for a recent review, see [4]). Some of the important

characteristics of cognitive maps highlighted by these studies include:

1. distorted information about distances and directions

2. landmarks, places, paths
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3. hierarchical organization

4. multiple frames of reference

Many models of cognitive maps have also been proposed and one idea appears to

be most prominent, namely that the map begins with some form of a network of “place

representations”. Examples of models that favor this idea include that of Chown, Kaplan

and Kortenkamp [5], Kuipers [6], Poucet [7], and Yeap and Jefferies [1].

However, few of these models, if any, have been developed and tested using a mobile

robot to the extent of showing explicitly that such a network could be used to explain

and/or account for cognitive mapping behavior. It should be pointed out that it is not the

case that these researchers fail/neglect to test their models. Rather, much of the effort

to date has been focused on computing a network to demonstrate its use for successful

navigation (by a robot). More recent examples of such works include Kortenkamp [8],

Jefferies, Cree, Mayor and Baker [9], and Kuipers, Modayil, Beeson, MacMahon and

Savelli [10].

Without doubt, if the model was tested using a mobile robot, there is a natural ten-

dency to use the map computed to immediately perform successful navigation tasks.

The perfect memory of a robot together with the use of some reasonably accurate sen-

sors/sensing algorithms would make it attractive to do so. However, and consequently,

in many instances, the researchers ended up solving a robot mapping problem rather

than a cognitive mapping problem. Little effort has been spent using their results to

seriously explain and/or account for known cognitive mapping behavior.

It is interesting to note a parallel here between early AI researchers interested in

computer vision and AI researchers now interested in using a robot to do cognitive

mapping. Researchers then were rightly concerned that computer vision is not the same

as image processing (see for example, [11]). Researchers now should also pay attention

to the more complex nature of cognitive mapping as opposed to robot mapping.

To understand cognitive mapping using a mobile robot, the map created by the robot

should exhibit some of the characteristics of cognitive maps mentioned above. The

map should then be used by the robot to find its way home. In conducting the latter

experiment, some parallels should be drawn between cognitive mapping in animals and

in robot.

This paper is about how to use a robot to test theories of cognitive mapping. We

first observed that a key feature of cognitive maps is that the information in them is

distorted. A robot equipped with sonar sensors and an odometer would often receive

distorted information about its environment. The question is: How does a robot compute

a “distorted cognitive map” from such information? How is the map represented? We

also observed that for lower animals, much is made use of the distance and direction

information implicit in such a map to find their way home. Could our robot find its

way home using its distorted map? Could it also be utilizing the distance and direction

information implicit in these maps? If so, how does it do it? The rest of this paper

describes our experiments with such a robot and concludes with a discussion of some

insights gained from the experiments.
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Fig. 1. The environment and the path traversed. The total distance traveled is about 70m.

2 The Robot and Its Cognitive Map

The robot we use is a Pioneer 2 robot from ActivMedia and it came with a ring of 8 sonar

sensors. The robot is positioned somewhere in the corridor in an office environment and

is allowed to explore the environment until it is told to stop. No modification of the

environment is done. That is, things that already existed in the environment (such as

rubbish bins, flower pots, cabinets, etc.) remain there and doors leading into offices are

close or open depending on the time of the experiment.

The environment used and one of the paths the robot took is as shown in Fig. 1. It

does not use a wall-following procedure to navigate. It simply moves forward until it

could not and then it ”looks” for an empty space to move forward again. “Looking” is

done using all the eight sensors but information about the environment is sensed via the

two side sensors. The exploration algorithm used is described as follows:

1. move in a “straight” line and collect sonar data from the sides;

2. stop when an obstacle is encountered; and

3. turn away from the obstacle and continue the mapping process.

Given the above experimental set-up, how does our robot compute a “cognitive

map” of its environment? Following Yeap and Jefferies’s theory of cognitive mapping

[1], our robot computes a network of local spaces visited (see also [12]). Each local
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space is referred to, in the theory, as an absolute space representation (or ASR, in short).

The details of our new algorithm for computing ASRs for the experiments conducted

here can be found in [13–15]. Briefly, the key ideas underlying our new algorithm are

as follows:

1. ASRs are computed for each path traversed — a path is a single continuous move-

ment of the robot through the environment (i.e. without any stopping or turning);

2. The important exits found in a path are the exits at both ends of it (i.e. given the

poor sensing, one cannot trust the side exits detected). This means that the required

ASR for a path is the bounded region for the path;

3. To compute the bounded region, preference is given to using the large surfaces

as opposed to the smaller ones, as small surfaces are more likely to be caused by

incorrect sonar readings. The algorithm thus uses all the larger surfaces, say, greater

than 700mm in length, to compute a boundary. If the resulting boundary is greater

than, say, 70% of the distance traveled, then that is an acceptable boundary for the

current ASR. If not, more of the small surfaces are added until a reasonable sized

boundary is obtained. These figures were found experimentally and work well in

practice. Changing their values influences the sizes of the surfaces in the final map.

4. An ASR computed for a path represents an ASR computed for a single view of

the robot. The next step is to merge or split ASRs obtained from individual paths

into ASRs for the environment experienced. The final ASRs are then connected as

a network of ASRs.

Figure 2 shows the final ASRs computed for the journey as shown in Fig. 1. The start

and end point of an ASR are marked with a dark circle. The surfaces in between indicate

the rough shape of the ASR computed.

3 Theoretical Considerations

In the first outward journey, the robot creates a network of ASRs. What happens in

the homeward journey? Obviously, using the same cognitive mapping algorithm, it will

produce a network of ASRs for the homeward journey. Figure 3 shows the network

of ASRs generated in the homeward journey. Note that 9 ASRs are computed in this

instance instead of the 10 ASRs in the outward journey. This difference suggests that

not only the shape of the individual ASR could change during the different journeys but

also the way in which the path is partitioned could differ as well. Note too that the sixth

ASR computed in the outward journey is now perceived as 3 ASRs in the homeward

journey.

One strong feature of Yeap and Jefferies’s [1] theory of cognitive maps is not simply

that the cognitive map is a network of ASRs. Rather, the notion of an ASR is an im-

portant representation on its own. It is computed to represent the current bounded local

environment that the autonomous system is in (be it an animal or a robot). Just like the

information afforded in the current view which is used primarily for solving problems

pertaining to the view, an ASR is a representation for solving problems pertaining to the

current local environment. For example, it is for telling us, among other things, what

lies behind us or what to expect when we turn.
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Fig. 2. ASRs computed for the journey as shown in Fig. 1. An ASR is between two adjacent

dots and surfaces located to the left and to the right of the path inside the ASR are its boundary

surfaces. The path is the solid line connecting the dots. (0,0) indicates the starting position of the

robot.

How a cognitive map could emerge from sequences of ASRs experienced in differ-

ent journeys through the environment is still very much a mystery. It is more than just

connecting the different ASRs together as a network of ASRs. Building a cognitive map

takes a longer time (than, say, the time spent visiting a local environment). One has to

at least ensure that one is settling in a place before remembering the place well. The

environment needs to be thoroughly investigated to ensure correct interpretations of the

significance of each location. Such understanding will affect the way we perceive the

environment and subsequently our construction of a cognitive map representation for it.

If we move away from conventional wisdom whereby one would immediately try to

combine ASRs computed in the homeward journey with those computed in the outward

journey, what is left? One possible solution is to make use of a key piece of information

implicitly available in ASRs, namely the approximate shape of an ASR tells us a good

estimate of the approximate distance traveled. This distance estimate is better than the

summing up of the zigzag movements of the robot. We implement an algorithm that

exploits the use of this information to navigate home.

4 Implementations and Results

In the following, we will present the implementation and results for using the cognitive

map generated during the outward journey to obtain the estimates for the current posi-
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Fig. 3. ASRs computed in the homeward journey.

tion of the robot as well as for its orientation. A total of ten experiments were conducted,

results for two of them are described in more detail.

4.1 Going Home

The algorithm for returning home is described as follows:

1. Compute ASRs (up to the current position) in the homeward journey.

2. Measure the length of each ASR computed (as opposed to the actual distance the

robot traveled).

3. Map the ASR-distance traveled onto the network of ASRs computed in the outward

journey.

The last step provides an estimate of where the robot thinks it is in the actual environ-

ment. The robot stops when it believes it has reached home.

The robot computes a cognitive map in the outward journey as shown in Fig. 2. It

then makes an attempt to return home, generating new maps and ASRs. Two such maps

computed after the robot believes that it reached home are shown in Figures 3 and 4.

We measured the distance between the robot’s final position and the actual home

position in the real world. For the two experiments presented in the figures, the robot

was 1.5m short of the home position for the experiment corresponding to Fig. 3 and

1m for the one corresponding to Fig. 4. For the remaining eight experiments, the robot

ended within 3m of home position, which is less than 5% of the total distance traveled.
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Fig. 4. ASRs computed in the homeward journey in the second experiment.

The robot’s location in the physical environment during the homeward journey can be

seen in Figures 5 and 6.

4.2 Orientation

In the homeward journey, the robot estimates where it is in the cognitive map computed

during the outward journey. As such, it can use that position to estimate its orientation

to home from its current position using the information contained in the map computed

during the outward journey.

The robot can estimate the direction to the home at any intermediate position. Four

randomly selected positions were chosen in each of the maps shown in Figures 3 and

4, and the estimated home direction was compared to the actual direction to the home

position in the real world. The results are visualized in Fig. 5 (corresponding to Fig. 3)

and Fig. 6 (corresponding to Fig. 4), which show a map of the real environment con-

taining the path the robot actually took to return home. The estimated direction to home

is depicted as a short arrow, the correct one as a long arrow. The estimated and correct

angles with respect to the coordinate system of the map computed during the outward

journey are given as well.

It can be observed that the direction estimate is fairly accurate; the accuracy usu-

ally decreases the longer the robot travels, which is due to error accumulation of the

odometry measurements and drift.
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Fig. 5. Robot’s estimations of home position (indicated by the shorter arrows) at four randomly

selected positions during the first homeward journey. The longer arrow shows the correct orien-

tation.

5 Discussion

The results we obtained for both experiments are surprisingly accurate. The robot did

not go astray. It is interesting to note that in an earlier experiment [16], we used the

following strategy:

1. Do not compute ASRs in the homeward journey.

2. Use the ASRs computed in the outward journey in a reverse order.

3. Measure the length of the ASR that the robot thinks it is in and travel similar dis-

tances to reach the end of that ASR.

4. Search for the entrance to the next ASR. If the next ASR is on its left, turn left.

Otherwise turn right.

The robot performed less well using that strategy. This might argue well for the

importance of computing local ASRs every time one enters a new local environment.

Our use of a robot with sonar sensors provides us with an opportunity to investigate

the significant use of distance information in cognitive mapping. The surprisingly good

initial results lead us to question whether there is ever a need to immediately combine

different networks of ASRs. With hindsight, it now appears there are good reasons
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Fig. 6. Robot’s estimations of home position during the second homeward journey.

that we do not want to. One reason is that if the environment is a simple environment,

there is not much information to be gained from merging them. If the environment is

complicated, then it is unclear an updated ASR is useful at all. Research into humans’

ability to integrate paths such as that of Ishikawa and Montello [17] would help us in

the future to refine our studies here.

The fact that the robot does not forget any of the ASRs along the way might help

to explain the accurate orientation ability of the robot. Nonetheless the robot still needs

to estimate its position fairly accurately in order to get a good orientation calculation.

In the future, it would be interesting to explore how the robot might use orientation

information to compute a short cut back home. It would also be useful to investigate

means to orient if the network is not well-connected (i.e. with some ASRs missing, for

example).

Finally, just like animals have shown to use ingenious algorithms to find its way,

we could explore in the future many more different algorithms that exploit the use of a

cognitive map to find its way.
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