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Abstract—Generating a more detailed understanding of do-
mestic electricity demand is a major topic for energy suppliers
and householders in times of climate change. Over the years
there have been many studies on consumption feedback systems
to inform householders, disaggregation algorithms for Non-
Intrusive-Load-Monitoring (NILM), Real-Time-Pricing (RTP) to
promote supply aware behavior through monetary incentives and
appliance usage prediction algorithms. While these studies are
vital steps towards energy awareness, one of the most fundamen-
tal challenges has not yet been tackled: Automated detection of
start and stop of usage cycles of household appliances. We argue
that most research efforts in this area will benefit from a reliable
segmentation method to provide accurate usage information. We
propose a SVM-based segmentation method for home appliances
such as dishwashers and washing machines. The method is
evaluated using manually annotated electricity measurements of
five different appliances recorded over two years in multiple
households.

I. INTRODUCTION

In a time where the global electricity demand is constantly
increasing although the electricity consumed by each device is
decreasing, the electricity usage attribution becomes more and
more difficult. There have been many studies that investigate
the impact of electricity information systems that provide
feedback on the consumption behavior to the householders.
Some studies claim that information systems help to decrease
consumption between 5% and 15% [1]. The authors of these
studies mostly relate the reduction to the increased awareness
of the actual consumption leading to a consumption cut. This
is supported by studies on Real-Time-Pricing (RTP) tariffs
that intend to provide an incentive to shift load to different
time periods, but users respond with reducing their overall
electricity consumption and simply do not use the device
instead of using it at a different time [2]. RTP tariffs are
pricing models where the electricity price varies over time.
A field study by [3] monitored the habits regarding resource
management of 15 households over a period of 3 months
concludes that householders desire visibility of their behavior
on resource usage, especially in real-time. Over the years, in
domestic households, there has been an increasing effort to
enable power suppliers as well as the users to gain more insight
into a household’s electricity usage pattern by installing smart-
meters that are able to collect electricity usage data on a much
higher frequency than annual manual readings. The installation
of smart-meters will, in a first step only, allow more frequent
usage information of the full household to be recorded but
by it self will not help the householders to identify energy

intensive devices and the related behaviors. This monitoring is
known as Non-Intrusive-Load-Monitoring (NILM) in contrast
to intrusive load monitoring (ILM), where each device or
socket in the household is measured.

A. Disaggreation

In order to enable NILM to provide the detailed information
of intrusive monitoring, researchers have proposed algorithms
to disaggregate the load into the individual loads. For example,
[4] use a Gaussian distribution to model each application and
further use a clustering algorithm to identify the number of
devices in use; [5] implement disaggregation using sparse cod-
ing. While the problem of comparability of such publications
has been addressed by [6], demanding the community to use
more robust evaluation metrics such as F1-score or RMSE, we
find that disaggregation is trying to solve the most important
goal of them all while neglecting some fundamental task
required to provide accurate information to householders, or
even further, enabling researchers to develop such algorithms.

B. Load Patterns

Most devices in a household that are interesting for cus-
tomer feedback are those which require user interaction to
run, such as dishwashers or washing machines. These devices
have a multi-pattern load characteristic, where each state of the
washing process has a very characteristic load pattern. A multi-
stage pattern load can therefore be described by a composition
of patterns such as the washing start-up, heating or spinning:
Figure 1. Single-pattern devices, such as a refrigerator, have
a continuous, nearly binary load pattern, where during com-
pression there is a nearly constant power draw and otherwise
a near zero power draw (see Figure 2). In both cases the load
curve characteristic from cycle to cycle is very similar and
therefore the energy demand as well. Being able to describe
the loads by a composition of patterns, segmenting start-stop
events may be sufficient information to determine the energy
load. This also enables energy disaggregation to reduce the
complexity of identifying the start-stop event, or even just
some pattern within a cycle and derive the full usage from
previously learned patterns.

C. Usage and Load Prediction

Another field of active research is the prediction of device
usages and the related energy demand. [7] build a non-
homogeneous Markov Chain to model end-use energy profiles



Fig. 1. Multi-pattern energy load of a washing machine

Fig. 2. Single-pattern energy load of a fridge

on appliance level, [8] propose a daily pattern-based proba-
bility model, [9] describe a method using decision trees and
Bayesian networks, [10] also use a bayesian network, and [11]
evaluate the performance of many classifiers such as bayesian
networks and decision trees. In [12] a probabilistic model is
described that combines three probabilities: The time of the
day, the elapsed time since the appliance was last used and a
factor for unusual inactivity.

In order to identify the usage of such devices in the first
place, we need to be able to segment the cycles of such
devices, meaning we need to identify start and stop timestamps
in the measurement time-series. This fundamental task has
so far not been addressed by many researchers and was
usually tried to solve by using a simple thresholding algorithm.
Thresholding is done by defining a device as started in case a
certain load threshold is reached and stopped in case it drops
below the threshold. As shown in Figure 1 and 2, estimating
such a threshold needs to be done for each device individually
and might fall short in case a device drops below the threshold
during a usage cycle.

We are not aware of a published household energy dataset
that contains start-stop annotations, hence the evaluation of
such prediction algorithms rely on unverified heuristics such
as thresholding for (semi-)unsupervised segmentation. Manual
annotation is only feasible for very small datasets such as the
widely used REDD [13], which only has recordings up to 19
days. Assuming a device was used once per day, the dataset
only provides 19 cycles which are not enough samples for an
evaluation.

D. Data Annotation

We therefore conclude that the area of appliance usage
prediction, energy demand predictions and disaggregation will

benefit heavily from a robust and reliable method to annotate
and segment energy data. The annotation can also directly be
used for householder feedback systems since it enables new
statistics on usage behavior. [14] describe an annotation system
where they identify load patterns using a DBSCAN algorithm
to cluster different power states to overcome manual threshold
parameter tuning. They also describe a feedback loop to end-
users using a smartphone-app and push notifications and ask
the user to validate segmentation and gather data to retrain.
[15] describes a collaborative framework in form of a web-
based annotation system. The platform intends to crowdsource
the manual annotation task using gamification techniques to
encourage the users to contribute.

In this publication we present a method to identify the start
and stop event of such devices automatically using supervised
machine learning.

II. METHOD

We are aiming for a method that can rely on a few
annotation samples, hence we chose to incorporate Support-
Vector-Machines (SVM) to classify sliding windows of the
time-series. Using a sliding window helps to overcome the
fact that load measurements are a continuous time series that
contain too much data to be classified all at once, as well
as achieving the required default series length. The use of a
sliding window will also help to further develop such methods
into a streaming method, where just recorded data is classified
on-the-fly. Our method is a classic classification pipeline,
separated into multiple stages: data annotation, preprocessing
and classification.

A. Data Annotation

In order to train an SVM we need annotated training and test
data. We therefore manually annotated some of your appliance
measurements, saving the start and end timestamp. This was
done using a custom web application, allowing multiple people
to participate in the data annotation. In total, we created 777
manual annotations for 5 appliances as shown in Table I.

B. Data Preprocessing

A sliding window is used to convert this continuous time
series to individual feature vectors. To avoid near-identical
feature vectors for large window sizes and reduce training
time, the step parameter was introduced, defining the number
of seconds the window is shifted each time. Each sliding
window of the data is preprocessed using a discrete wavelet
transformation (DWT). We only keep the approximate wavelet
coefficients in order to obtain a low-pass representation of
the signal. We found that using the Daubechies wavelet
with 30 coefficients (db30) leads to the most robust results.
The wavelet transformation was done using the PyWavelets1

python package.

1https://github.com/PyWavelets/pywt



C. Classification

For devices such as a washing machine, the start and end
timestamps are very rare events. The maximum number of
usages per day is given by the usage cycle length, meaning
if a cycle takes 3 hours, the maximum number of start events
is given by 24h/3h = 8. Measuring data at 1Hz will lead to
86400 measuring points per day, meaning the events looked
for are at maximum 8 timestamps out of 86400, thus extremely
rare. Since we are using a sliding window, we define the
classification task to identify whether a given window contains
a start or stop event. We also experimented changing the labels
so that the event must be within a defined area of the window
to avoid having too little characteristic of the event within the
window. Since it did not lead to a significant improvement we
abandoned this hypothesis.

SVMs use a hyperplane to linearly separate the classes
in a dataset. The hyperplane not only separates two classes,
it also maximizes the distance between the hyperplane and
each class, making SVMs a large margin classifier [16]. The
hyperplane is thus defined by the closest data points from
each class, which in turn become the support vectors. The
benefit of using an SVM over other classifiers such as Neural
Networks is, that it is not so easily prone to a sampling
selection bias as it does class separation through a hyperplane
instead of class-conditional probabilities. Because the problem
is most probably not linearly separable, we use a non-linear
polynomial kernel function to transform the data into a higher-
dimensional space. SVMs support classification of more than
two classes or binary problems called multi-class SVM. It is
important to note that SVMs are inherently capable of separat-
ing only two classes since a single hyperplane cannot separate
more than two classes, thus they have to be implemented
using workarounds such as multiple one-vs-rest classifiers. We
decided to not incorporate multi-class SVMs, but to train two
completely independent SVMs in order to classify start and
stop events as simple heuristics can be used to connect the
two events.

D. Extracting Exact Timestamp

Using a sliding window of e.g. 512 seconds with a single
label per window will lead to an approximated event where we
only know that the event lies within the window. The larger
the window, the less exact the event classification. Since we
are classifying successive sliding windows, we can calculate
the number of windows the event is present in using:

eventWindowCount = windowLength/stepSize

In case all windows are classified correctly, the event is the last
value of the first window and the first value of the last window.
This allows for improvements of the classification by first
calculating a probability on the found event by comparing the
number of positive labeled successive windows to the expected
window count. Second, we can estimate the exact timestamp
by averaging the last value of the first window and the first
value of the last window. In case all windows were classified
correctly, we are able to calculate the exact second the event

TABLE I
APPLIANCES MANUAL USAGE ANNOTATIONS

ID Type Usage Count Duration Avg. Usage
#1 Washing Machine 82 259 days 1h 27m
#2 Washing Machine 100 204 days 2h 30m
#3 Dishwasher 143 515 days 2h 23m
#4 Dishwasher 224 843 days 2h 57m
#5 Dishwasher 228 367 days 1h 27m

occurred, thus overcoming the problem of increasing window
size.

III. DATA

The data used for evaluation was collected in private house-
holds in Germany between 2016 and 2018. Electric power
is measured at a rate of 1Hz using commercial plugs placed
between the outlet and appliance that can be accessed using a
local WiFi network. The measurements are collected in each
home using a Raspberry Pi running hypriot OS2, an oper-
ating system designed to run Docker containers. An Eclipse
Smarthome3 instance with a custom developed binding to com-
municate with the plugs is used to collect and persist the data
in a PostgreSQL database. Locally persisted data is uploaded
hourly to a central database via the internet using a secure
SSH connection. In order to gain ground truth for training and
evaluation, we manually annotated 5 of the collected devices
(see Table I) using a custom developed web application. The
annotated appliances are normal consumer washing machines
and dishwashers, as these have a more complex multi-pattern
load compared to e.g. fridges as described in Section I.

IV. EXPERIMENTS

A. Data Preprocessing

In our experiment, we evaluated the method using window
sizes of (32, 64, 128, 256, 512) seconds, a step size of 5
seconds and the db30 wavelets transformation. The classifier
is based on an SVM implemented in Python using the Scikit-
learn toolkit4. The Radial Basis Function (RBF) and the
Polynomial Kernel (PK) both produced equally good results
with the PK offering more parameters for fine-tuning.

The best performing SVM configuration for our dataset was
using a 5 degree polynomial kernel with a coefficient of 10.
The detailed results can be found in Table II. Changes in step
size did not affect the results significantly and are therefore
not listed.

B. Test Procedure and Performance Measures

As the data is highly unbalanced with 2-3% of the total
data being events, accuracy is not a suitable metric. Thus the
performance of the classifier was primarily evaluated using
F1-score. For testing, three dishwashers and two washing
machines were used, as these had a significant amount of
manual annotations available. Using these, we only extracted

2https://blog.hypriot.com
3https://www.eclipse.org/smarthome/
4https://scikit-learn.org



Fig. 3. Washing cycle of appliance #3

Fig. 4. Washing cycle of appliance #4

data from the given annotation adding 5 minutes before and
after a cycle. As the power consumption in between usages
is zero, this helped to increase the number of positive feature
vectors. The converted datasets are then split into 60% training
and 40% test data.

C. Results

The most obvious finding is, that the classification improves
with increasing window size, which can be attributed to the
fact that a larger window size also provides more context
for the classifier, further improving results at the cost of a
longer delay in real-time applications. The overall classifica-
tion results for the dishwashers (#3, #4, #5) are promising.
For appliance #3 and #4 the classification of start events
using a window size of 512 are with a F1-score of 0.98 and
0.95 very good and the average time error is only 7.63 and
28.93 seconds. The stop event for appliance #3 provides a
satisfying F1-score of 0.90, but on the other hand the stop
event classification for appliance #4 has a F1-score of 0.0,
thus completely failing the classification task. #5 performs
well for both start and stop events. For start events and a large
window size there is a very distinct value change, the heating
phase, where the power consumption increases to 2kW. For
stop events there is no such significant event. Examining the
data shows that the stop event has, in general, a far less distinct
pattern compared to the start event, and comparing appliance
#3 and #4, the latter has only few recurring characteristics
in between cycles and no distinct time between the last
significant pattern und the actual stop event (see Figure 3
and 4). Appliance #3 has such a distinct recurring pattern and
therefore the time error for stop events is 0.0 seconds, thus
the exact second of each stop event can be found.

TABLE II
EXPERIMENTAL RESULTS ON APPLIANCES LISTED IN TABLE I SHOWING
F1-SCORE, ERROR MATRIX AND AVERAGE TIME ERROR IN SECONDS.

ID Windows-Size Type F1 TP TN FN FP Avg. Time Error

#1

32
start 0.0906 240 34431 2 4817 115.33
stop 0.0529 196 32277 22 6995 178.04

64
start 0.1396 451 33271 4 5554 103.79
stop 0.1150 382 33016 41 5841 174.79

128
start 0.3788 881 35091 28 2862 114.38
stop 0.2676 765 33909 63 4125 144.82

256
start 0.7243 1609 35188 206 1019 107.97
stop 0.5740 1440 34445 134 2003 127.55

512
start 0.7736 1782 33516 415 628 112.52
stop 0.8474 1649 34098 206 388 95.83

#2

32
start 0.0286 284 58980 66 19235 96.26
stop 0.0104 92 60945 17 17511 167.49

64
start 0.0762 601 63143 72 14494 97.81
stop 0.0197 173 60960 39 17138 182.61

128
start 0.2550 1187 69675 147 6787 64.62
stop 0.0379 296 62487 113 14900 173.41

256
start 0.5192 2192 70524 395 3664 61.66
stop 0.0606 415 63488 294 12578 106.27

512
start 0.5207 1569 70268 1531 1357 132.78
stop 0.0498 236 65488 595 8406 115.46

#3

32
start 0.1766 398 100903 1 3710 24.09
stop 0.2105 161 103643 204 1004 22.57

64
start 0.2996 734 100482 7 3425 6.21
stop 0.3404 523 102098 208 1819 29.51

128
start 0.1137 1478 79390 4 23041 3.42
stop 0.5260 1230 100466 215 2002 28.09

256
start 0.8336 2941 98336 23 1151 4.65
stop 0.6232 2633 96634 237 2947 27.83

512
start 0.9863 3424 96002 53 42 7.63
stop 0.9018 3256 95556 69 640 0.00

#4

32
start 0.1347 641 194266 10 8227 89.56
stop 0.0014 42 142072 0 61030 138.75

64
start 0.4060 1176 197953 33 3408 80.82
stop 0.0025 73 144499 0 57998 129.44

128
start 0.4711 2365 193746 53 5257 91.38
stop 0.0046 126 147267 0 54028 75.43

256
start 0.7815 4720 191773 99 2540 99.22
stop 0.0073 188 147790 0 51154 45.58

512
start 0.9590 5525 188546 87 386 28.93
stop 0.0063 148 147770 0 46626 0.00

#5

32
start 0.4054 540 106542 82 1502 72.69
stop 0.0577 572 89418 0 18676 207.18

64
start 0.5197 1034 105137 123 1788 131.29
stop 0.1196 1144 90095 7 16836 189.82

128
start 0.3209 2246 95161 68 9440 108.71
stop 0.2729 2283 92467 0 12165 169.70

256
start 0.4782 4550 90098 76 9855 62.51
stop 0.6539 4567 95177 0 4835 43.56

512
start 0.8401 5334 92546 96 1935 54.10
stop 0.8889 5318 93263 1 1329 0.00

The results for the washing machine #1 are also promising
with an F1-score of 0.77 and 0.84 for the start and stop event.
For appliance #2 the results are poor and the classification task
completely fails for the stop events.

Overall it can be said that the classification works well for
start events and only for some appliances on stop events. The
most significant part being that the start event provides much
more distinct features.

V. CONCLUSION

The segmentation of energy loads is a not yet solved
problem and the proposed method based on supervised seg-
mentation using an SVM shows promising results. While the
method performs very well for the segmentation of the start
events, the stop events very much depend on a rich pattern



at the end of the cycle. The results also show that there
needs to be a sufficient amount of pattern present within a
window in order to classify correctly. Even on large window
sizes the method is able to identify the exact second of an
event. The cost of a large window size only plays a vital role
in a real-time scenario as the device would have to run at
least for the time of the window-size in order to identify the
event. In terms of annotating datasets for further research this
aspect is negligible. While the method does not incorporate
any heuristics to further improve the results, especially for the
off event these may just make the difference as a stop event
always has a start event before and a cycle usually will only
take a certain time, narrowing down the part of a signal where
a stop event may occur.
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