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Abstract. This paper presents an approach for applying a dual quaternion hand–
eye calibration algorithm on an endoscopic surgery robot. Special focus is on ro-
bustness, since the error of position and orientation data provided by the robot can
be large depending on the movement actually executed. Another inherent prob-
lem to all hand–eye calibration methods is that non–parallel rotation axes must
be used; otherwise, the calibration will fail. Thus we propose a method for in-
creasing the numerical stability by selecting an optimal set of relative movements
from the recorded sequence. Experimental evaluation shows the error in the es-
timated transformation when using well–suited and ill–suited data. Additionally,
we show how a RANSAC approach can be used for eliminating the erroneous
robot data from the selected movements.

1 Introduction
In this paper we present an approach for the practical aspects in terms of robustness
of hand–eye calibration using an endoscopic surgery robot. Especially, we address two
problems: how to choose the data that is used in the calibration algorithm such that the
numerical stability increases, and how to use a RANSAC approach for outlier detection
and removal.

A common drawback of all hand–eye calibration algorithms, which is inherent to
the problem itself, is that at least two motions are necessary where the rotations have
non–parallel rotation axes. Consequently, numerical stability can be increased by se-
lecting the data accordingly. Additionally, outlier detection and removal is essential,
since the position and orientation data provided by the robot arm is unreliable when
substantial changes in the direction of movement are executed. A RANSAC approach
[6] is used for this purpose.

The application area is the reconstruction of high–quality medical light fields [12].
The hand–eye transformation has to be estimated every time when the camera head is
mounted anew on the endoscope optics, which is done before each operation because it
has to be sterilized. Therefore, an algorithm that works automatically and stably without
human interaction is desirable.

A vast amount of literature is available on the topic of hand–eye calibration. The
classical way is to solve for rotation first, and then for translation [9, 11]. In [7] an
algorithm is proposed that solves for both simultaneously using nonlinear optimization,
while Daniilidis [3, 4] is the first who presented a linear algorithm for simultaneous
computation of the hand–eye parameters. This was the main reason why we chose this
algorithm as a basis for our work.
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Fig. 1. Left: experimental setup. (1) AESOP 3000, (2) “patient”, (3) camera head and endoscope,
(4) light source, (5) computer, (6) video–endoscopic system (original image), (7) second monitor
(computer image/light field). Right: original image as seen by the camera.

The paper is organized as follows: Sect. 2 describes the AESOP 3000 robot system
as well as the method formerly used for estimating the unknown hand–eye transforma-
tion between robot plug and camera. In Sect. 3 we give a short introduction to hand–eye
calibration methods, with special focus on the dual quaternion approach proposed by
Daniilidis. How to make the hand–eye calibration robust enough for practical purposes
is described in Sect. 4. Experimental results are given in Sect. 5.

2 The Robot System

We use the Computer Motion Inc. AESOP 3000 (cf. Fig. 1, left, no. (1)) endoscopic
surgery robot. Images are grabbed directly from the endoscopic camera. The robot arm
has seven degrees of freedom (one translational and six rotational), which are provided
by the robot before and after each image is taken; the data is averaged for further
processing. The complete experimental setup is shown in Fig. 1 (left). A calibration
pattern is used to estimate the intrinsic camera parameters [10]. Radial and tangential
lens–distortion coefficients are computed in order to undistort the (highly distorted) en-
doscopic images. Given these seven values, the position and orientation (pose) of the
endoscope plug can be computed from the known kinematics, but not the pose of the
tip of the endoscope.

Up to now, the unknown transformation from plug to camera was estimated as fol-
lows: The distance from plug to endoscope–lens was measured by hand, while the ori-
entation of the optics with respect to the plug was calculated in two steps. Since the
camera head is not fixed at the endoscope optics but is mounted anew before each op-
eration, the rotation between head and optics had to be computed. This was done by
detecting a notch at the optics border (cf. Fig. 1, right). Usually a 30◦ optics is used,
i. e. the angle had to be taken into account when computing the final transformation.
Then the relative movement between two images using a calibration pattern was com-
puted and the plug–angle was optimized such that the relative movement calculated
by the kinematics equaled the real one. This method has some drawbacks: First of all,
measuring by hand is arduous and inaccurate. Also, notch detection requires using addi-
tional low-level image processing methods instead of data already available and is only
possible if an optics is used that actually has a notch, which is not the case for all en-
doscope optics. These drawbacks are eliminated by using a robust hand–eye calibration
method as described in the following sections.



3 Hand–Eye Calibration
3.1 Overview

Given rigid displacements between the movements of a robot arm and the movements
of a camera mounted on that arm, the unknown rigid transformation between arm and
camera has to be computed, which is the same for all arm/camera movement pairs.
This is known as hand–eye calibration. These circumstances are shown in the following
commutative diagram; robot arm poses are denoted by A, camera poses by C at two
time steps i and k. The unknown hand–eye transformation is denoted by RHE and tHE.
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The hand–eye parameters RHE and tHE can be recovered from the following equa-
tion induced by the commutativity of diagram (1):
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which can be decomposed into two separate equations:

RHERAik = RCikRHE (3)
(I3 − RCik)tHE = tCik − RHEtAik (4)

These are the well–known hand–eye equations, which were first published in [9, 11].
Numerous solutions for solving (3) and (4) have been proposed, e. g., [9, 11, 7, 3]. The
classical way is to first solve (3) for RHE, and then (4) for tHE. In [7] an algorithm
is proposed that solves for RHE and tHE simultaneously using nonlinear optimization,
while Daniilidis [3, 4] is the first who presented a linear algorithm for simultaneous
computation of the hand–eye parameters. Besides the well–founded theory and good
performance, this was the main reason why we chose the dual quaternion algorithm for
our application. Additionally, using this algorithm it is possible to show how numerical
stability of hand–eye calibration in general is increased by selecting optimal relative
movement pairs as described in Sect. 4.1. Therefore, we will now give a summary of
the dual quaternion algorithm.

3.2 Dual Quaternions: A Unified Representation of Rotation and Translation

Quaternions Quaternions are a commonly used representation for rotations in 3–D,
hence we will not go into much detail here; for details see, e. g., [5, 8].

A quaternion h is defined as h = w + xi + yj + zk with w, x, y, z ∈ IR, where w is
the real part and x, y, z are the imaginary parts. For the imaginary units, the following
equation holds: i2 = j2 = k2 = ijk = −1. Often a quaternion is written as a 4–D
vector h = (w, x, y, z) or h = (w, v), where v is a 3–vector containing the imaginary
parts. Just as the multiplication of two unit complex numbers defines a rotation in 2–D,
a multiplication of two unit quaternions yields a rotation in 3–D. Let p be a 3–D point



to be rotated, a a rotation axis with |a| = 1, and θ the angle of rotation around this axis.
Define the following two quaternions:

h =

(

cos
θ

2
, sin

θ

2
· a

)

, p′ = (0, p) . (5)

Then
p′

rot = hp′h , (6)

where p′
rot is the rotated point and h is the conjugate of h.

Dual Quaternions As quaternions are a representation for 3–D rotations, dual quater-
nions treat rotations and translations in a unified way.
Dual Numbers Dual numbers were proposed by Clifford in the 19th century [2]. They
are defined by ẑ = a + εb, where ε2 = 0. When using vectors for a and b instead of
real numbers, the result is a dual vector.
Dual Quaternions A dual quaternion ĥ is defined as a quaternion, where the real and
imaginary parts are dual numbers instead of real ones, or equivalently as a dual vector
where the dual and the non–dual part are quaternions: ĥ = h+ εh′. Just as unit quater-
nions represent rotations, unit dual quaternions contain rotation and translation [3]. In
the dual quaternion representation of R and t, the non–dual part h is defined as in (5),
and the dual part as
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Using the dual quaternion representation, the hand–eye calibration formulas (3) and (4)
and can be written in a concise way, very similar to (6):

ĥc = ĥĥrĥ , (8)

where ĥr encodes the movement of the robot arm and ĥc the movement of the camera.

3.3 Algorithm

This section gives an overview over a linear algorithm for hand–eye calibration using
dual quaternions presented by Daniilidis in [3, 4]. Starting from (8) he derives a linear
system of equations which has to be solved for h and h′:

A

(

h

h′

)

= 0 . (9)

Since each movement pair (ĥr, ĥc) results in 6 equations, for n motions A is a 6n × 8
matrix having rank 6.

Note that at least two motions of the robot arm/camera with different rotation axes
are necessary for reconstructing the rigid hand–eye transformation. This is a general
result [1, 11], i. e. it is not specific to the dual quaternion algorithm.

Solving (9) using Singular Value Decomposition (SVD) with A = UΣV T results
in two zero singular values, or nearly zero singular values in the case of noisy data. The
two–dimensional solution space is spanned by the column vectors v7 and v8 of V that



correspond to the zero singular values, i. e.
(

h h′
)T

= λ1v7+λ2v8. The two remaining
unknowns λ1 and λ2 can be computed by using the additional constraint that ĥ is a unit
dual quaternion. The recovery of the actual hand–eye transformation, i. e. RHE and tHE,
from ĥ is easy: The rotation matrix can be computed directly from the non–dual part h

of ĥ (cf. e. g., [8]). The translation vector is given by tHE = 2h′h (cf. [3]).

4 Hand-Eye Calibration of an Endoscopic Surgery Robot

In this section we are going to describe how the numerical stability of hand–eye cali-
bration can be increased by selecting robot/camera movement pairs in an optimal way.
Additionally, elimination of outliers using a RANSAC approach is presented.

4.1 Selection of Movement Pairs for Increased Numerical Stability

For reconstructing the rigid transformation from robot arm to camera using hand–eye
calibration, at least two motions with different rotation axes are necessary (cf. Sect. 3.3).

As probably in most applications, in endoscopic surgery, robot arm movements are
usually continuous, which means that translation and rotation of neighboring frames
are similar and the rotation axes are not very different. Hence it is usually suboptimal
to process the arm/camera positions in their temporal order. It is much better to select
the data such that relative movements are used for calibration that actually fulfill the
requirement above. As an optimality criterion we propose to use the scalar product
between the rotation axes of two camera movements. Let aij and akl be the normalized
rotation axes of two relative movements from frame i to j and from k to l, respectively.
Then

sij,kl = |aT
ijakl| (10)

gives a value of one for parallel rotation axes and zero for orthogonal axes, where the
latter are the ones that are suited best for hand–eye calibration. Note that camera and not
robot arm data should be used at this point, since the camera was calibrated accurately
using a calibration pattern, while the data provided by the robot is still corrupted by out-
liers and hence unreliable. Also, it is important for practical purposes, that the rotation
axes of relative movements are well–defined. For small rotations, the axis changes its
direction considerably, and two axes may be almost orthogonal even if the movement
pair is ill–suited for hand–eye calibration. Therefore, we recommend a pre–selection
of those relative movements, where the rotation matrix differs from identity. In our im-
plementation, we use the rotation angle θ for pre–selection (cf. Sect. 5). An additional
benefit of this step is that the amount of data for the following pairwise rating decreases
and thus computation time as well.

Selection of the best pairs increases the numerical stability of the hand–eye calibra-
tion, which can be easily seen if we examine at the condition number of matrix A in
(9). This matrix is of rank six if non–parallel axes are used, and of rank five if parallel
axes are used. Now consider the ratio of the largest singular–value of A and the sixth
singular–value: The system is ill–conditioned in the case of parallel axes (the condition
number becomes infinite in the worst case), and the condition gets better (i. e. the sixth
singular value is much greater than zero) if the axes are non-parallel.



If the goal is an optimal data set consisting of m movement pairs, the problem can
be formulated as follows: Let C denote the set of all movement pairs possible; find a
subset M of C such that the following criterion is minimized:

sM =
∑

(ij,kl)∈M

sij,kl , (11)

where sM denotes the rating of M. Better pairs in the sense of low absolute ratings sM
lead to lower condition numbers and thus higher numerical stability. In general, this
means that sij,kl has to be computed for all possible movement pairs (but of course not
necessarily be stored) in order to get the optimal subset M. Our experiments showed
that this is actually possible if the number of frames is not too high; e. g., even for
100 frames and a pre–selection as described above, computation of the optimal subset
takes only a few seconds on a state–of–the art PC. For n frames, the algorithm is of
complexity O(n4): The total number of all relative movements is n(n + 1)/2; if m
movements are left after pre–selection, the total number of pairs is m(m + 1)/2. For
the worst case, i. e. m = n(n + 1)/2, this results in m(m + 1)/2 = (n4 + 2n3 + 3n2 +
2n)/8 = O(n4).

4.2 Eliminating Outliers

The AESOP 3000 robot provides pose information, which is usually accurate (cf. Fig.
2). Nevertheless, experiments showed that in some cases, especially when the direction
of movement changes substantially, pose information is very unreliable (note the peaks
in Fig. 2). This is only a local problem, since the experiments also showed that the
pose–error does not sum up during the movement of the arm. Thus it is necessary to
detect the positions where those changes occur, so that they can be removed from the
data used for hand–eye calibration. Possible methods for outlier elimination are:

– Remove the positions where the changes in direction of translation of the robot arm
are very high.

– Follow an iterative approach and use all data in the first iteration; for the second
iteration remove those positions that have very high errors when comparing the
hand–eye transformed robot poses with the data from the calibrated endoscope.

– Apply a RANSAC [6] approach; use the same error measure as in the item above.

Since the most promising approach is the last one, we are going to describe now how to
apply RANSAC for outlier removal:

1. Choose m random samples from the movement pairs selected as described in Sect.
4.1, where each sample consists of e = 2 movements, the minimum number re-
quired for hand–eye calibration.

2. For each sample i: Compute RHEi, tHEi.
3. Apply the hand–eye transformation to the robot arm poses and compute the er-

ror between the transformed arm poses and the calibrated camera poses for each
relative movement. Determine the number of consistent pairs.

4. Keep the largest set of consistent pairs.
5. After all samples are evaluated: Re–compute RHEi and tHEi using all consistent

pairs of the largest set.



Table 1. Mean error per frame for old method and hand–eye calibration, once with best movement
pairs, once for pairs in temporal order. For the Euler angles, the error is given in degrees, for the
rotation in norm of the difference quaternion, and for the translation in mm.

Method/Sequence Euler x Euler y Euler z Quaternion Translation
ALF1, old method 0.289 0.279 0.246 0.00477 0.675
ALF1, hand–eye, best 0.219 0.386 0.245 0.00495 0.897
ALF1, hand–eye, temporal order 0.941 0.729 0.675 0.0135 10.7
ALF2, old method 0.259 0.264 0.352 0.00495 0.910
ALF2, hand–eye, best 0.218 0.272 0.288 0.00433 1.15
ALF2, hand–eye, temporal order 0.502 0.834 1.50 0.0161 10.85
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Fig. 2. Sequence ALF2. Left: Error in rotation measured in norm of the difference quaternion.
Right: Error in translation measured in norm of the difference vector.

The probability P that in at least one sample all e elements are inliers is given by
P = 1−(1 − (1 − ε)e)m, where ε is the estimated outlier–rate. If this equation is solved
for m we get the minimum number of samples that should be chosen. For P = 0.99,
e = 2, and an estimated outlier–rate of ε = 20% we get m ≈ 4.51, i. e. at least 5
samples should be used.

5 Experiments

For evaluation of accuracy and robustness of the dual quaternion hand–eye calibration
algorithm with the extensions for movement pair selection and outlier elimination, we
present here the results on endoscopic image sequences with different movement paths.
Instead of a real patient, a box with a hole for the endoscope that is inlaid with news-
paper and printed OP–images of the abdomen was used. An example image (without
calibration pattern) is shown in Fig. 1 (right).

Table 1 shows the errors for the two sequences ALF1 (55 frames) and ALF2 (100
frames) for the former method used, for the best movement pairs using the hand–eye
method, and for the hand–eye algorithm where the relative movements were used in
temporal order. The error per frame was computed between the actual endoscope poses
(from the calibration pattern) and the poses computed by applying the hand-eye trans-
formation to the robot arm data. Comparison of the errors of the best pairs and pairs
in temporal order shows impressively the influence of pair selection: When using the
temporal order, the hand–eye algorithm fails; when using the best pairs, the error is
comparable to the former method described in Sect. 2, but without its drawbacks, in
particular completely automatically. Before the selection of pairs rated using (10), we
pre–selected those relative movements, where the rotation angle θ was between 10◦



and 170◦ for sequence ALF1, and between 15◦ and 165◦ for ALF2. For ALF1 we used
30% (absolute: 36531) of all possible pairs left after pre–selection, for ALF2 10% (ab-
solute: 1720). Figure 2 depicts plots of the relative error in frame–to–frame movement
for the ALF2 sequence in rotation (measured in norm of the difference quaternion) and
translation for the former non–automatic method described in Sect. 2 and for the robust
hand–eye calibration method. Noticeable are the distinct peaks: These are exactly the
frames where the robot position data is very erroneous, which is the case if the move-
ment direction changes considerably. Remember also, that no nonlinear refinement was
used yet, which would result in even better performance.

6 Conclusion
We presented an approach for selecting the relative robot/camera movements such that
hand–eye calibration can be performed in a numerically stable way. Outlier removal
is very important in our application as well, which is the use of an endoscopic surgery
robot, since the robot position data is unreliable when movements such as substantial di-
rection changes are executed. We showed how to use RANSAC to accomplish this goal.
Although we applied a dual quaternion hand–eye calibration algorithm, these problems
are not specific to it, but inherent to the hand–eye calibration problem itself. We showed
experimentally the benefit of movement pair selection compared to the straightforward
approach of using relative movements in temporal order.
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